Medical Use and Emergency Response

Ricardo Martinez, M.D., FACEP

President & CEO

Safety Intelligence Systems, Corporation

Administrator, NHTSA 1994-1999

"The only thing more powerful than all the armies of the world is an idea who time has come."

- Victor Hugo

Crash every five seconds Injury every 15 seconds Death every 13 minutes

Injuries: >3,000,000

Costs:

>\$.5 billion per day

>\$230 billion annually

Medical Community Uses

- Prospective Saves lives directly
 - quickly accessible to medical personnel at the scene of a crash
 - Used to assess likelihood of injury, make triage decisions
- Retrospective -Saves lives indirectly
 - improve system triage and treatment protocols
 - "make system more efficient, less costly, and better match system resources to patient needs."
 - Injury research

EMS Maxims

- It's a system.
- Time is tissue.
- Get the *right*patient to the *right* place at the *right* time.

Trauma Triage

- Physiologic criteria
- Anatomic criteria
- Mechanism of Injury
 - Vast majority determined by MOI.
 - Very inefficient: over and under triage

Notable Quotes

"The emergence of crash data plays a strong role in the development and integration of emergency medical service systems."

- NAEMSP

"More accurate crash information would allow better injury prediction and help guide diagnostic and therapeutic decisions."

"Measured crash direction and force data can markedly improve injury prediction, algorithms, biomechanics, cost of injury research, and identification of problem injuries."

-ACEP

Key Entities Supporting Types of EDR Variables

- 1 American College of Surgeons (ACS), Resources for Optimal Care of the Injured Patient
- 2 National Association of EMS Physicians (NAEMSP)
- 3 American College of Emergency Physicians (ACEP)
- 4 ITS America, Medical Subcommittee includes representatives from the National Association of EMS Physicians, National Association of EMS State Directors
- 5 NHTSA EDR Work Group
- 6 Garthe Associates papers and presentations to NHTSA EDR WG and the Massachusetts Chapter of the American College of Surgeons
- 7 William Lehman Injury Research Center
- 8 University of Alabama Center for Injury Sciences
- 9 Presentations to IEEE MVEDR WG by Garthe, Martinez, Mango: July and Dec 2002, Feb 2003

Medical Use Variable List

Crash Descriptor Info.

location (Long/Lat) time date VIN

Crash Severity Info.

deceleration time history* direction of force (DOF)

Restraint Use Info (each seat position)

restraint use deployment of air bag(s)

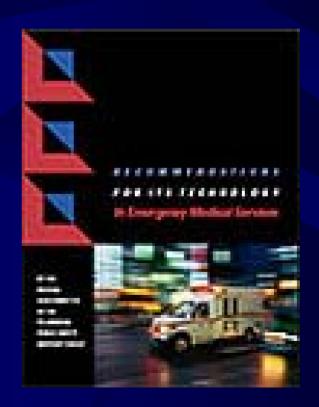
Other

number of occupants**

rollover***

** allows computation of ejection

*** might also be computed from direction of force


^{*} the time history allows the computation of other variables including delta V, crash pulse and if 3 axis, DOF

AGENDA FOR THE FUTURE

HEALTH CARE EMS PUBLIC HEALTH PUBLIC SAFETY

Recommendations for ITS Technology in EMS

Recommendations

- **Priority issue** Huge opportunity to reduce morbidity and mortality, improve EMS response
- Wireless E-911 essential
- Strong support for ACN and current telematics providers guidance for improvement
- Technology should meet emergency provider's needs and integrate into existing systems— not the other way around
- Needs <u>strong medical involvement</u> early on

Guidance for ACN

- Meaningful subset of all data
- Minimum standard for data set, format
- Critical crash info should arrive thru the "front door" with little or no delay
- Interoperable communications

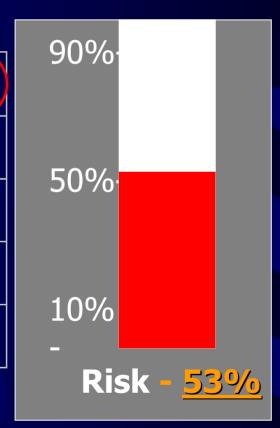
Urgency Algorithm

How does URGENCY Work?

- Predicts Probability of Serious Injury
- Based on Logistic
 Regression Analysis
 with Weighting
 Factors
- Applied to NASS Data

URGENCY Variables (Partial) Frontal Crash + 5 Predictors

Delta V, Mph	21
Air Bag + Belt	Yes
Vehicle Weight, lb.	2500
Occupant Age	30
Occupant Gender	Male

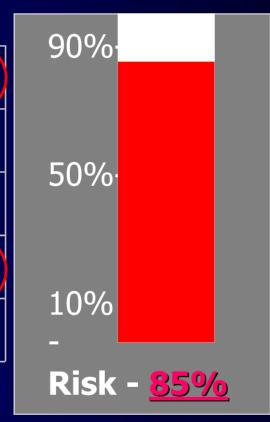

URGENCY Presentation

Higher Delta-V

Delta V, Mph	35
Air Bag + Belt	Yes
Vehicle Weight, lb.	2500
Occupant Age	25
Occupant Gender	Male

Examine Older Occupant – 70 YO

Prediction


URGENCY Presentation

Older Occupant

Delta V, Mph	35
Air Bag + Belt	Yes
Vehicle Weight, lb.	2500
Occupant Age	70
Occupant Gender	Male

Examine Unrestrained Occupant

URGENCY Presentation

No Restraint

Delta V, Mph	35
Air Bag + Belt	No
Vehicle Weight, lb.	2500
Occupant Age	(70)
Occupant Gender	Male

The Road Ahead...

